本人于2009年12月迁移至独立BLOG。
1、欢迎光临运维进行时,希望认识更多志向相同的朋友!
2、本站部分资源来源于网络,如有侵权请及时与我联系!
3、强烈建议使用Firefox、Opera、Safari及IE7以上的浏览器访问,以获得最佳浏览质量!
4、请勿发表与中华人民共和国法律、法规相抵触的言论,谢谢合作!
5、本人发布的文章与评论内容仅代表本人观点。
1、欢迎光临运维进行时,希望认识更多志向相同的朋友!
2、本站部分资源来源于网络,如有侵权请及时与我联系!
3、强烈建议使用Firefox、Opera、Safari及IE7以上的浏览器访问,以获得最佳浏览质量!
4、请勿发表与中华人民共和国法律、法规相抵触的言论,谢谢合作!
5、本人发布的文章与评论内容仅代表本人观点。
一、前言
Kubernetes 是Google开源的容器集群管理系统,基于Docker构建一个容器的调度服务,提供资源调度、均衡容灾、服务注册、动态扩缩容等功能套件,目前最新版本为0.6.2。本文介绍如何基于Centos7.0构建Kubernetes平台,在正式介绍之前,大家有必要先理解Kubernetes几个核心概念及其承担的功能。以下为Kubernetes的架构设计图:
1. Pods
在Kubernetes系统中,调度的最小颗粒不是单纯的容器,而是抽象成一个Pod,Pod是一个可以被创建、销毁、调度、管理的最小的部署单元。比如一个或一组容器。
2. Replication Controllers
Replication Controller是Kubernetes系统中最有用的功能,实现复制多个Pod副本,往往一个应用需要多个Pod来支撑,并且可以保证其复制的副本数,即使副本所调度分配的主宿机出现异常,通过Replication Controller可以保证在其它主宿机启用同等数量的Pod。Replication Controller可以通过repcon模板来创建多个Pod副本,同样也可以直接复制已存在Pod,需要通过Label selector来关联。
3、Services
Services是Kubernetes最外围的单元,通过虚拟一个访问IP及服务端口,可以访问我们定义好的Pod资源,目前的版本是通过iptables的nat转发来实现,转发的目标端口为Kube_proxy生成的随机端口,目前只提供GOOGLE云上的访问调度,如GCE。如果与我们自建的平台进行整合?请关注下篇《kubernetes与HECD架构的整合》文章。
4、Labels
Labels是用于区分Pod、Service、Replication Controller的key/value键值对,仅使用在Pod、Service、 Replication Controller之间的关系识别,但对这些单元本身进行操作时得使用name标签。
5、Proxy
Proxy不但解决了同一主宿机相同服务端口冲突的问题,还提供了Service转发服务端口对外提供服务的能力,Proxy后端使用了随机、轮循负载均衡算法。
说说个人一点看法,目前Kubernetes 保持一周一小版本、一个月一大版本的节奏,迭代速度极快,同时也带来了不同版本操作方法的差异,另外官网文档更新速度相对滞后及欠缺,给初学者带来一定挑战。在上游接入层官方侧重点还放在GCE(Google Compute Engine)的对接优化,针对个人私有云还未推出一套可行的接入解决方案。在v0.5版本中才引用service代理转发的机制,且是通过iptables来实现,在高并发下性能令人担忧。但作者依然看好Kubernetes未来的发展,至少目前还未看到另外一个成体系、具备良好生态圈的平台,相信在V1.0时就会具备生产环境的服务支撑能力。
一、环境部署
1、平台版本说明
1)Centos7.0 OS
2)Kubernetes V0.6.2
3)etcd version 0.4.6
4)Docker version 1.3.2
2、平台环境说明
3、环境安装
1)系统初始化工作(所有主机)
系统安装-选择[最小化安装]
引用
# yum -y install wget ntpdate bind-utils
# wget http://mirror.centos.org/centos/7/extras/x86_64/Packages/epel-release-7-2.noarch.rpm
# yum update
CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙(熟悉度更高,非必须)。
1.1、关闭firewall:
引用
# systemctl stop firewalld.service #停止firewall
# systemctl disable firewalld.service #禁止firewall开机启动
1.2、安装iptables防火墙
引用
# yum install iptables-services #安装
# systemctl start iptables.service #最后重启防火墙使配置生效
# systemctl enable iptables.service #设置防火墙开机启动
2)安装Etcd(192.168.1.10主机)
引用
# mkdir -p /home/install && cd /home/install
# wget https://github.com/coreos/etcd/releases/download/v0.4.6/etcd-v0.4.6-linux-amd64.tar.gz
# tar -zxvf etcd-v0.4.6-linux-amd64.tar.gz
# cd etcd-v0.4.6-linux-amd64
# cp etcd* /bin/
# /bin/etcd -version
etcd version 0.4.6
启动服务etcd服务,如有提供第三方管理需求,另需在启动参数中添加“-cors='*'”参数。
引用
# mkdir /data/etcd
# /bin/etcd -name etcdserver -peer-addr 192.168.1.10:7001 -addr 192.168.1.10:4001 -data-dir /data/etcd -peer-bind-addr 0.0.0.0:7001 -bind-addr 0.0.0.0:4001 &
配置etcd服务防火墙,其中4001为服务端口,7001为集群数据交互端口。
引用
# iptables -I INPUT -s 192.168.1.0/24 -p tcp --dport 4001 -j ACCEPT
# iptables -I INPUT -s 192.168.1.0/24 -p tcp --dport 7001 -j ACCEPT
3)安装Kubernetes(涉及所有Master、Minion主机)
通过yum源方式安装,默认将安装etcd, docker, and cadvisor相关包。
引用
# curl https://copr.fedoraproject.org/coprs/eparis/kubernetes-epel-7/repo/epel-7/eparis-kubernetes-epel-7-epel-7.repo -o /etc/yum.repos.d/eparis-kubernetes-epel-7-epel-7.repo
#yum -y install kubernetes
升级至v0.6.2,覆盖bin文件即可,方法如下:
引用
# mkdir -p /home/install && cd /home/install
# wget https://github.com/GoogleCloudPlatform/kubernetes/releases/download/v0.6.2/kubernetes.tar.gz
# tar -zxvf kubernetes.tar.gz
# tar -zxvf kubernetes/server/kubernetes-server-linux-amd64.tar.gz
# cp kubernetes/server/bin/kube* /usr/bin
校验安装结果,出版以下信息说明安装正常。
引用
[root@SN2014-12-200 bin]# /usr/bin/kubectl version
Client Version: version.Info{Major:"0", Minor:"6+", GitVersion:"v0.6.2", GitCommit:"729fde276613eedcd99ecf5b93f095b8deb64eb4", GitTreeState:"clean"}
Server Version: &version.Info{Major:"0", Minor:"6+", GitVersion:"v0.6.2", GitCommit:"729fde276613eedcd99ecf5b93f095b8deb64eb4", GitTreeState:"clean"}
4)Kubernetes配置(仅Master主机)
master运行三个组件,包括apiserver、scheduler、controller-manager,相关配置项也只涉及这三块。
4.1、【/etc/kubernetes/config】
4.2、【/etc/kubernetes/apiserver】
4.3、【/etc/kubernetes/controller-manager】
4.4、【/etc/kubernetes/scheduler】
启动master侧相关服务
引用
# systemctl daemon-reload
# systemctl start kube-apiserver.service kube-controller-manager.service kube-scheduler.service
# systemctl enable kube-apiserver.service kube-controller-manager.service kube-scheduler.service
5)Kubernetes配置(仅minion主机)
minion运行两个组件,包括kubelet、proxy,相关配置项也只涉及这两块。
Docker启动脚本更新
# vi /etc/sysconfig/docker
添加:-H tcp://0.0.0.0:2375,最终配置如下,以便以后提供远程API维护。
OPTIONS=--selinux-enabled -H tcp://0.0.0.0:2375 -H fd://
修改minion防火墙配置,通常master找不到minion主机多半是由于端口没有连通。
iptables -I INPUT -s 192.168.1.200 -p tcp --dport 10250 -j ACCEPT
修改kubernetes minion端配置,以192.168.1.201主机为例,其它minion主机同理。
5.1、【/etc/kubernetes/config】
5.2、【/etc/kubernetes/kubelet】
5.3、【/etc/kubernetes/proxy】
启动kubernetes服务
引用
# systemctl daemon-reload
# systemctl enable docker.service kubelet.service kube-proxy.service
# systemctl start docker.service kubelet.service kube-proxy.service
3、校验安装(在master主机操作,或可访问master主机8080端口的client api主机)
1) kubernetes常用命令
引用
# kubectl get minions #查查看minion主机
# kubectl get pods #查看pods清单
# kubectl get services 或 kubectl get services -o json #查看service清单
# kubectl get replicationControllers #查看replicationControllers清单
# for i in `kubectl get pod|tail -n +2|awk '{print $1}'`; do kubectl delete pod $i; done #删除所有pods
或者通过Server api for REST方式(推荐,及时性更高):
引用
# curl -s -L http://192.168.1.200:8080/api/v1beta1/version | python -mjson.tool #查看kubernetes版本
# curl -s -L http://192.168.1.200:8080/api/v1beta1/pods | python -mjson.tool #查看pods清单
# curl -s -L http://192.168.1.200:8080/api/v1beta1/replicationControllers | python -mjson.tool #查看replicationControllers清单
# curl -s -L http://192.168.1.200:8080/api/v1beta1/minions | python -m json.tool #查查看minion主机
# curl -s -L http://192.168.1.200:8080/api/v1beta1/services | python -m json.tool #查看service清单
注:在新版kubernetes中,所有的操作命令都整合至kubectl,包括kubecfg、kubectl.sh、kubecfg.sh等
2)创建测试pod单元
# /home/kubermange/pods && cd /home/kubermange/pods
# vi apache-pod.json
# kubectl create -f apache-pod.json
# kubectl get pod
引用
NAME IMAGE(S) HOST LABELS STATUS
fedoraapache fedora/apache 192.168.1.202/ name=fedoraapache Running
启动浏览器访问http://192.168.1.202:8080/,对应的服务端口切记在iptables中已添加。效果图如下:
观察kubernetes在etcd中的数据存储结构
观察单个pods的数据存储结构,以json的格式存储。
二、实战操作
任务:通过Kubernetes创建一个LNMP架构的服务集群,以及观察其负载均衡,涉及镜像“yorko/webserver”已经push至registry.hub.docker.com,大家可以通过“docker pull yorko/webserver”下载。
引用
# mkdir -p /home/kubermange/replication && mkdir -p /home/kubermange/service
# cd /home/kubermange/replication
1、 创建一个replication ,本例直接在replication模板中创建pod并复制,也可独立创建pod再通过replication来复制。
【replication/lnmp-replication.json】
执行创建命令
#kubectl create -f lnmp-replication.json
观察生成的pod副本清单:
[root@SN2014-12-200 replication]# kubectl get pod
引用
NAME IMAGE(S) HOST LABELS STATUS
84150ab7-89f8-11e4-970d-000c292f1620 yorko/webserver 192.168.1.202/ name=webserver_pod Running
84154ed5-89f8-11e4-970d-000c292f1620 yorko/webserver 192.168.1.201/ name=webserver_pod Running
840beb1b-89f8-11e4-970d-000c292f1620 yorko/webserver 192.168.1.202/ name=webserver_pod Running
84152d93-89f8-11e4-970d-000c292f1620 yorko/webserver 192.168.1.202/ name=webserver_pod Running
840db120-89f8-11e4-970d-000c292f1620 yorko/webserver 192.168.1.201/ name=webserver_pod Running
8413b4f3-89f8-11e4-970d-000c292f1620 yorko/webserver 192.168.1.201/ name=webserver_pod Running
2、创建一个service,通过selector指定 "name": "webserver_pod"与pods关联。
【service/lnmp-service.json】
执行创建命令:
# kubectl create -f lnmp-service.json
登录minion主机(192.168.1.201),查询主宿机生成的iptables转发规则(最后一行)
# iptables -nvL -t nat
引用
Chain KUBE-PROXY (2 references)
pkts bytes target prot opt in out source destination
2 120 REDIRECT tcp -- * * 0.0.0.0/0 10.254.102.162 /* kubernetes */ tcp dpt:443 redir ports 47700
1 60 REDIRECT tcp -- * * 0.0.0.0/0 10.254.28.74 /* kubernetes-ro */ tcp dpt:80 redir ports 60099
0 0 REDIRECT tcp -- * * 0.0.0.0/0 10.254.216.51 /* webserver */ tcp dpt:8080 redir ports 40689
访问测试,http://192.168.1.201:40689/info.php,刷新浏览器发现proxy后端的变化,默认为随机轮循算法。
三、测试过程
1、pods自动复制、销毁测试,观察kubernetes自动保持副本数(6份)
删除replicationcontrollers中一个副本fedoraapache
[root@SN2014-12-200 pods]# kubectl delete pods fedoraapache
I1219 23:59:39.305730 9516 restclient.go:133] Waiting for completion of operation 142530
fedoraapache
引用
[root@SN2014-12-200 pods]# kubectl get pods
NAME IMAGE(S) HOST LABELS STATUS
5d70892e-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.201/ name=fedoraapache Running
5d715e56-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.202/ name=fedoraapache Running
5d717f8d-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.202/ name=fedoraapache Running
5d71c584-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.201/ name=fedoraapache Running
5d71a494-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.202/ name=fedoraapache Running
#自动生成出一个副本,保持6份的效果
引用
[root@SN2014-12-200 pods]# kubectl get pods
NAME IMAGE(S) HOST LABELS STATUS
5d717f8d-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.202/ name=fedoraapache Running
5d71c584-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.201/ name=fedoraapache Running
5d71a494-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.202/ name=fedoraapache Running
2a8fb993-8798-11e4-970d-000c292f1620 fedora/apache 192.168.1.201/ name=fedoraapache Running
5d70892e-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.201/ name=fedoraapache Running
5d715e56-8794-11e4-970d-000c292f1620 fedora/apache 192.168.1.202/ name=fedoraapache Running
2、测试不同角色模块中的hostPort
1)pod中hostPort为空,而replicationcontrollers为指定端口,则异常;两侧都指定端口,相同或不同时都异常;pod的hostport为指定,另replicationcon为空,则正常;pod的hostport为空,另replicationcon为空,则正常;结论是在replicationcontrollers场景不能指定hostport,否则异常,待持续测试。
2)结论:在replicationcontronllers.json中,"replicaSelector": {"name": "webserver_pod"}要与"labels": {"name": "webserver_pod"}以及service中的"selector": {"name": "webserver_pod"}保持一致;
请关注下篇《kubernetes与HECD架构的整合》,近期推出。
参考文献:
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/getting-started-guides/fedora/fedora_manual_config.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/DESIGN.md
http://www.infoq.com/cn/articles/Kubernetes-system-architecture-introduction
转载请注明来源 http://blog.liuts.com/post/247/
Docker的生态日趋成熟,开源社区也不断孵化出优秀的周边项目,覆盖网络、监控、维护、部署、开发等方面。帮助开发、运维人员快速构建、运营Docker服务环境,其中也不乏有大公司的影子,如Google、IBM、Redhat,甚至微软也宣称后续将提供Docker在Windows平台的支持。Docker的发展前景一片大好。但在企业当中,如何选择适合自己的Docker构建方案?可选的方案有kubernetes与CoreOS(都已整合各类组件),另外一种方案为Haproxy+etcd+confd,采用松散式的组织结构,但各个组件之间的通讯是非常严密的,且扩展性更强,定制也更加灵活。下面详细介绍如何使用Haproxy+etcd+confd构建一个高可用及自动发现的Docker基础架构。
一、架构优势
约定由Haproxy+etcd+confd+Docker构建的基础服务平台简称“HECD” 架构,整合了多种开源组件,看似松散的结构,事实上已经是一个有机的整体,它们互相联系、互相作用,是Docker生态圈中最理想的组合之一,具有以下优势:
自动、实时发现及无感知服务刷新;
支持任意多台Docker主宿机;
支持多种APP接入且打散至不分主宿机;
采用Etcd存储信息,集群支持可靠性高;
采用Confd配置引擎,支持各类接入层,如Nginx;
支持负载均衡、故障迁移;
具备资源弹性,伸缩自如(通过生成、销毁容器实现);
二、架构说明
在HECD架构中,首先管理员操作Docker Client,除了提交容器(Container)启动与停止指令外,还通过REST-API方式向Etcd(K/V)存储组件注册容器信息,包括容器名称、主宿机IP、映射端口等。Confd配置组件会定时查询Etcd组件获取最新的容器信息,根据定义好的配置模板生成Haproxy配置文件Haproxy.cfg,并且自动reload haproxy服务。用户在访问业务服务时,完全没有感知后端APP的上线、下线、切换及迁移,达到了自动发现、高可用的目的。详细架构图见图1-1。
图1-1 平台架构图
为了方便大家理解各组件间的关系,通过图1-2进行架构流程梳理,首先管理员通过Shell或api操作容器,下一步将容器信息注册到Etcd组件,Confd组件会定时查询Etcd,获取已经注册到Etcd中容器信息,最后通过Confd的模板引擎生成Haproxy配置,整个流程结束。
图1-2架构流程图
了解架构流程后,我们逐一对流程中各组件进行详细介绍。
1、Etcd介绍
Etcd是一个高可用的 Key/Value 存储系统,主要用于分享配置和服务发现。
简单:支持 curl 方式的用户 API (HTTP+JSON)
安全:可选 SSL 客户端证书认证
快速:单实例可达每秒 1000 次写操作
可靠:使用 Raft 实现分布式
2、Confd介绍
Confd是一个轻量级的配置管理工具。通过查询Etcd,结合配置模板引擎,保持本地配置最新,同时具备定期探测机制,配置变更自动reload。
3、Haproxy介绍
HAProxy是提供高可用性、负载均衡以及基于TCP和HTTP应用的代理,支持虚拟主机,它是免费、快速并且可靠的一种解决方案。(来源百科)
三、架构部署
平台环境基于Centos6.5+Docker1.2构建,其中Etcd的版本为etcd version 0.5.0-alpha,Confd版本为confd 0.6.2,Haproxy版本为HA-Proxy version 1.4.24。下面对平台的运行环境、安装部署、组件说明等进行详细说明,环境设备角色表如下:
1、组件安装
1.1 Docker安装
SSH终端登录192.168.1.22服务器,执行以下命令:
1.2 Haproxy、confd安装
SSH终端登录192.168.1.20服务器,执行以下命令:
1.3 Etcd(v0.4.6)安装
SSH终端登录192.168.1.21服务器,执行以下命令:
2、组件配置
2.1 Etcd配置
由于etcd是一个轻量级的K/V存储平台,启动时指定相关参数即可,无需配置。
由于etcd具备多机支持,参数“-peer-addr”指定与其它节点通讯的地址;参数“-addr”指定服务监听地址;参数“-data-dir”为指定数据存储目录。
由于etcd是通过REST-API方式进行交互,常见操作如下:
1) 设置(set) key操作
2) 获取(get) key信息
3) 删除key信息
更多操作API见https://github.com/coreos/etcd/blob/master/Documentation/api.md。
2.2 Confd+Haproxy配置
由于Haproxy的配置文件是由Confd组件生成,要求Confd务必要与haproxy安装在同一台主机上,Confd的配置有两种,一种为Confd资源配置文件,默认路径为“/etc/confd/conf.d”目录,另一种为配置模板文件,默认路径为“/etc/confd/templates”。具体配置如下:
创建配置文件目录
# mkdir -p /etc/confd/{conf.d,templates}
(1)配置资源文件
详细见以下配置文件,其中“src”为指定模板文件名称(默认到路径/etc/confd/templates中查找);“dest”指定生成的Haproxy配置文件路径;“keys”指定关联Etcd中key的URI列表;“reload_cmd”指定服务重载的命令,本例中配置成haproxy的reload命令。
【/etc/confd/conf.d/ haproxy.toml】
(2)配置模板文件
Confd模板引擎采用了Go语言的文本模板,更多见http://golang.org/pkg/text/template/,具备简单的逻辑语法,包括循环体、处理函数等,本示例的模板文件如下,通过range循环输出Key及Value信息。
【/etc/confd/templates/haproxy.cfg.tmpl】
(3)模板引擎说明
本小节详细说明Confd模板引擎基础语法与示例,下面为示例用到的KEY信息。
1、base
作为path.Base函数的别名,获取路径最后一段。
{{ with get "/app/servers/prickly_blackwell"}}
server {{base .Key}} {{.Value}} check
{{end}}
2、get
返回一对匹配的KV,找不到则返回错误。
{{with get "/app/servers/prickly_blackwell"}}
key: {{.Key}}
value: {{.Value}}
{{end}}
3、gets
返回所有匹配的KV,找不到则返回错误。
{{range gets "/app/servers/*"}}
{{.Key}} {{.Value}}
{{end}}
4、getv
返回一个匹配key的字符串型Value,找不到则返回错误。
{{getv "/app/servers/cocky_morse"}}
5、getvs
返回所有匹配key的字符串型Value,找不到则返回错误。
{{range getvs "/app/servers/*"}}
value: {{.}}
{{end}}
6、split
对输入的字符串做split处理,即将字符串按指定分隔符拆分成数组。
{{ $url := split (getv "/app/servers/cocky_morse") ":" }}
host: {{index $url 0}}
port: {{index $url 1}}
7、ls
返回所有的字符串型子key,找不到则返回错误。
{{range ls "/app/servers/"}}
subkey: {{.}}
{{end}}
8、lsdir
返回所有的字符串型子目录,找不到则返回一个空列表。
{{range lsdir "/app/"}}
subdir: {{.}}
{{end}}
(4)启动confd及haproxy服务
下面为启动Confd服务命令行,参数“interval”为指定探测etcd的频率,单位为秒,参数“-node”为指定etcd监听服务主地址,以便获取容器信息。
3、容器配置
前面HECD架构说明内容,有讲到容器的操作会即时注册到etcd组件中,是通过curl命令进行REST-API方式提交的,下面详细介绍通过SHELL及Python-api两种方式的实现方法,支持容器启动、停止的联动。
3.1、SHELL实现方法
实现的原理是通过获取“Docker run ***”命令输出的Container ID,通过“docker inspect Container ID”得到详细的容器信息,分析出容器服务映射的外部端口及容器名称,将以“/app/servers/容器名称”作为Key,“主宿机: 映射端口”作为Value注册到etcd中。其中Key信息前缀(/app/servers)与“/etc/confd/conf.d/haproxy.toml”中的keys参数是保持一致的。
【docker.sh】
docker.sh使用方法:
1) 启动一个容器
# ./docker.sh run yorko/webserver:v3(镜像)
2) 停止一个容器
# ./docker.sh stop berserk_hopper(容器名)
3.2、Docker-py API实现方法
通过Python语言调用Docker-py的API实现容器的远程操作(创建、运行、停止),并结合python-etcd模块对etcd进行操作(set、delete),达到与SHELL方式一样的效果,很明显,Docker-py方式更加容易扩展,可以无缝与现有运营平台对接。
为兼顾到远程API支持,需对docker启动文件“exec”处进行修改,详细见如下:
# vi /etc/init.d/docker
启动容器的程序如下:
【docker_run.py】
停止容器的程序如下:
【docker_stop.py】
注意:
由于容器是无状态的,尽量让其以松散的形式存在,映射端口选项要求使用“-P”参数,即使用随机端口的模式,减少人手干预。
四、业务上线
HECD架构已部署完毕,接下来就是让其为我们服务,案例中使用的镜像“yorko/webserver:v3”为已经构建好的LAMP平台。类似的镜像也可以在docker-pub中下载到,开始跑起,运行dockery.sh创建两个容器:
访问Haproxy监控地址:http://192.168.1.20/admin-status,刚创建的容器已经添加到haproxy中,见图1-3。
图1-3 Haproxy监控后台截图
1)观察Haproxy的配置文件(更新部分):
2)访问php测试文件http://192.168.1.20/info.php
图1-4 php测试文件截图
从图1-4可以看出,获取的服务器端IP为容器本身的IP地址(172.17.0.11),在System环境变量处输出容器名为“598cf10a50a2”的信息。
参考:
http://ox86.tumblr.com/post/90554410668/easy-scaling-with-docker-haproxy-and-confd
https://github.com/AVGP/forrest/blob/master/forrest.sh